Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Year range
1.
Journal of Pharmaceutical Analysis ; (6): 564-579, 2021.
Article in Chinese | WPRIM | ID: wpr-908776

ABSTRACT

Three-dimensional(3D)extrusion-based bioprinting is widely used in tissue engineering and regener-ative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique.One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink(a mixture of biomaterials and cells).Research shows that printability can be affected by many factors or parameters,including those associated with the bioink,printing process,and scaffold design,but these are far from certain.This review highlights recent de-velopments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability,printability measurements and characterization,and printability-affecting factors.Key issues and challenges related to printability are also identified and discussed,along with approaches or strategies for improving printability in extrusion-based bioprinting.

2.
International Journal of Surgery ; (12): 710-714, 2021.
Article in Chinese | WPRIM | ID: wpr-907510

ABSTRACT

At present, trachea reconstruction by tissue engineering technology of 3D bio-printing has become an ideal method for repairing long-segment trachea after injury, and how to select printing materials to manufacture appropriate tissue engineering trachea is the key to ensure the perfect survival of trachea grafts in the human body. Bioink is a cellular formula containing bioactive ingredients that could make or break the 3D printed tissue-engineered trachea. It is particularly important to find a bio-ink that has good biocompatibility and can print biological structures with high mechanical strength. This paper aims to review the advantages and disadvantages of bio-ink made of different materials, current application status and clinical application of 3D printed tissue-engineered trachea, so as to promote the clinical transformation of tissue-engineered trachea as soon as possible and put into practical clinical application systematically.

3.
Chinese Journal of Biotechnology ; (12): 4024-4035, 2021.
Article in Chinese | WPRIM | ID: wpr-921483

ABSTRACT

Decellularized extracellular matrix (dECM), which contains many proteins and growth factors, can provide three-dimensional scaffolds for cells and regulate cell regeneration. 3D bioprinting can print the combination of dECM and autologous cells layer by layer to construct the tissue structure of carrier cells. In this paper, the preparation methods of tissue and organ dECM bioink from different sources, including decellularization, crosslinking, and the application of dECM bioink in bioprinting are reviewed, with future applications prospected.


Subject(s)
Bioprinting , Extracellular Matrix , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
4.
Journal of Zhejiang University. Science. B ; (12): 1022-1033, 2021.
Article in English | WPRIM | ID: wpr-922560

ABSTRACT

Drug delivery with customized combinations of drugs, controllable drug dosage, and on-demand release kinetics is critical for personalized medicine. In this study, inspired by successive opening of layered structures and compartmentalized structures in plants, we designed a multiple compartmentalized capsular structure for controlled drug delivery. The structure was designed as a series of compartments, defined by the gradient thickness of their external walls and internal divisions. Based on the careful choice and optimization of bioinks composed of gelatin, starch, and alginate, the capsular structures were successfully manufactured by fused deposition modeling three-dimensional (3D) printing. The capsules showed fusion and firm contact between printed layers, forming complete structures without significant defects on the external walls and internal joints. Internal cavities with different volumes were achieved for different drug loading as designed. In vitro swelling demonstrated a successive dissolving and opening of external walls of different capsule compartments, allowing successive drug pulses from the capsules, resulting in the sustained release for about 410 min. The drug release was significantly prolonged compared to a single burst release from a traditional capsular design. The bioinspired design and manufacture of multiple compartmentalized capsules enable customized drug release in a controllable fashion with combinations of different drugs, drug doses, and release kinetics, and have potential for use in personalized medicine.

5.
Chinese Journal of Tissue Engineering Research ; (53): 3553-3558, 2020.
Article in Chinese | WPRIM | ID: wpr-847712

ABSTRACT

BACKGROUND: Cells cannot survive in the area 200 µm away from nutrients in vitro. Vascular network construction is crucial for thick tissue and organ regeneration in tissue engineering. Coaxial cell printing provides a new way to construct vascular-like channels in vitro. OBJECTIVE: To optimize the coaxial cell printing performance of bioink and to build the tissue-engineered scaffolds with vascular-like structure. METHODS: The aseptic sodium alginate solution was prepared by intermittent pasteurization and then frozen. Freeze-dried powder of aseptic silk fibroin was prepared from degummed silk and sealed. The thawed sodium alginate solution was added to the silk fibroin protein freeze-dried powder and human umbilical vein endothelial cells were added to prepare the bioink. The outer axis of the biological three-dimensional printer was connected with the bioink, and the inner axis was connected with the crosslinking agent. The scaffolds were prepared by coaxial printing, and performed by optical coherence tomography, scanning electron microscopy observation and tensile test. Coaxial scaffolds were made by freeze-preserved sodium alginate solution for 7 days with human umbilical vein endothelial cells. Coaxial scaffolds were also made by freeze-dried sodium alginate solution for 7 days with human umbilical vein endothelial cells and silk fibroin protein sealed for 6 months. The cell survival rate was detected by dead and alive staining after 24 hours of culture in vitro. Vascular-like scaffolds with series and parallel structures were designed and printed. The cell proliferation was detected after 1, 3, 7, 10, and 14 days of culture. RESULTS AND CONCLUSIONS: (1) The optical coherence tomography showed that the maximum printing height of the bioink was 9 layers and the overall thickness was about 4.4 mm. Scanning electron microscopy showed that the outer wall of hollow fiber-filament of vascular-like scaffolds presented irregular strip-shaped crimp with micron-scale internal connected pore structure, while the inner wall of hollow fiber-filament had denser pore structure. (2) The elastic modulus of silk protein freeze-dried scaffold was higher than that of sodium alginate solution (P < 0.05). (3) The cell survival rate of scaffolds treated with sodium alginate solution for 7 days was (86.7±3.4)%, and that of scaffolds treated with silk protein freeze-dried powder for 7 days was (98.1±1.2)%, indicating that the sodium alginate solution freeze- preserved for 7 days was free of bacteria and the shelf-life of silk protein could be up to 6 months. (4) The proliferation activity of cells cultured with parallel structure for 7, 10, and 14 days was higher than that with series structure (P < 0.05). (5) These results imply that the scaffolds have good biocompatibility and mechanical properties.

6.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 52-55, 2020.
Article in Chinese | WPRIM | ID: wpr-781209

ABSTRACT

@# Three dimensionally printed composite porous bone tissue engineering scaffolds have become a research focus. Composite polyvinyl alcohol (PVA) has good biocompatibilityand degradability, but it cannot be prepared indepen⁃dently because it cannot resist highmechanical resistance. This material shows many advantages, such as good biocom⁃patibility, degradability and mechanical properties, when compounded with other materials with good mechanical proper⁃ties and good biocompatibility. Therefore, 3D printed composite PVA scaffold material can optimize the performance of PVA scaffolds. This article reviews 3D printing bone scaffold technology, polyvinyl alcohol (PVA), and composite PVA scaffolds for in vivo and in vitro bone formation.

7.
Tissue Engineering and Regenerative Medicine ; (6): 761-769, 2018.
Article in English | WPRIM | ID: wpr-718789

ABSTRACT

BACKGROUND: Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. METHODS: In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bioactive peptides and tyramine-conjugated hyaluronic acids for fast gelation. RESULTS: Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bioink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed < 90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. CONCLUSION: We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.


Subject(s)
Bioprinting , Cues , Fibroblasts , Hyaluronic Acid , Hydrogels , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Osteopontin , Peptides , Regeneration , Regenerative Medicine , Stem Cells , Tissue Engineering
8.
Tissue Engineering and Regenerative Medicine ; (6): 155-162, 2018.
Article in English | WPRIM | ID: wpr-713809

ABSTRACT

The extracellular matrix (ECM) is known to provide instructive cues for cell attachment, proliferation, differentiation, and ultimately tissue regeneration. The use of decellularized ECM scaffolds for regenerative-medicine approaches is rapidly expanding. In this study, cartilage acellular matrix (CAM)-based bioink was developed to fabricate functional biomolecule-containing scaffolds. The CAM provides an adequate cartilage tissue–favorable environment for chondrogenic differentiation of cells. Conventional manufacturing techniques such as salt leaching, solvent casting, gas forming, and freeze drying when applied to CAM-based scaffolds cannot precisely control the scaffold geometry for mimicking tissue shape. As an alternative to the scaffold fabrication methods, 3D printing was recently introduced in the field of tissue engineering. 3D printing may better control the internal microstructure and external appearance because of the computer-assisted construction process. Hence, applications of the 3D printing technology to tissue engineering are rapidly proliferating. Therefore, printable ECM-based bioink should be developed for 3D structure stratification. The aim of this study was to develop printable natural CAM bioink for 3D printing of a tissue of irregular shape. Silk fibroin was chosen to support the printing of the CAM powder because it can be physically cross-linked and its viscosity can be easily controlled. The newly developed CAM-silk bioink was evaluated regarding printability, cell viability, and tissue differentiation. Moreover, we successfully demonstrated 3D printing of a cartilage-shaped scaffold using only this CAM-silk bioink. Future studies should assess the efficacy of in vivo implantation of 3D-printed cartilage-shaped scaffolds.


Subject(s)
Cartilage , Cell Survival , Cues , Extracellular Matrix , Fibroins , Freeze Drying , Printing, Three-Dimensional , Regeneration , Silk , Tissue Engineering , Viscosity
9.
Tissue Engineering and Regenerative Medicine ; (6): 612-621, 2016.
Article in English | WPRIM | ID: wpr-647664

ABSTRACT

Three-dimensional (3D) tissue/organ printing is a major aspect of recent innovation in the field of tissue engineering and regenerative medicine. 3D tissue/organ printing aims to create 3D living tissue/organ analogues, and have evolved along with advances in 3D printing techniques. A diverse range of computer-aided 3D printing techniques have been applied to dispose living cells together with biomaterials and supporting biochemical factors within pre-designed 3D tissue/organ analogues. Recent developments in printable biomaterials, such as decellularized extracellular matrix bio-inks have enabled improvements in the functionality of the resulting 3D tissue/organ analogues. Here, we provide an overview of the 3D printing techniques and biomaterials that have been used, including the development of 3D tissue/organ analogues. In addition, in vitro models are described, and future perspectives in 3D tissue/organ printing are identified.


Subject(s)
Biocompatible Materials , Extracellular Matrix , In Vitro Techniques , Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL